

[Kumar, 6(5): May 2019] DOI- 10.5281/zenodo.3234986

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES STRONGLY CHROMATIC METRO DOMINATION OF P_n , C_n AND ${P_n}^2$ Vishu Kumar M*¹, Vidyashree K² & Lakshminarayana S³

*1,2&3Department of Mathematics, School of Applied Science, REVA University, Yelahanka, Bangalore – 560064, India

ABSTRACT

A dominating set *D* of a graph G(V,E) is called metro dominating set *G* if for every pair of vertices *u*, *v*, there exists a vertex *w* in *D* such that $d(u,w) \neq d(v,w)$. A metro dominating set *D* is called strongly chromatic metro dominating set if for every vertex $v \in D$ is from the same color class. The minimum cardinality strongly chromatic metro dominating set is called strongly chromatic metro domination number and is denoted by $SC\gamma_{\beta}$. In this paper we find strongly chromatic metro domination number of path, cycles and square of a path.

Keywords: metric dimension, metro domination, strongly chromatic metro domination, power graph. AMS Mathematics Subject Classification (2010):05C56.

I. INTRODUCTION

Let G(V,E) be a simple, non-trivial, undirected and non-null graphs. A graph *G* is k-colorable if there exists a k-coloring of *G*. One of the fastest growing areas within graph theory is the study of domination and related problem. A subset *D* of *V* is said to be a dominating set of *G* if every vertex in *V*-*D* is adjacent to a vertex in *D*.

The minimum cardinality of a dominating set is called the domination number of *G* and is denoted by $\gamma(G)$. A subset *D* of *V* is said to be a dom-chromatic set if *D* is a dominating set and $\chi(\langle D \rangle) = \chi(G)$. The dom-chromatic number $\gamma_{ch}(G)$ of *G* is the minimum cardinality of a dom-chromatic set.

In 1976 F.Harary and R.A.Melter [1] introduced the notation of metric dimension. A vertex $x \in V(G)$ resolves a pair of vertices $u, w \in V(G)$ if $d(v, x) \neq d(w, x)$. A set of vertices $S \subseteq V(G)$ resolves *G* and *S* is a resolving set of *G*, if every pair of distinct vertices of *G* are resolved by same vertex in *S*. A resolving set *S* of *G* with minimum cardinality is a metric dimension of *G* denoted by $\beta(G)$.

A dominating set *D* of *V*(*G*) having a property that for each pair of vertices *u*, *v* there exist a vertex *w* in *D* such that $d(u,w) \neq d(v,w)$ is called metro dominating set of *G* or simply MD-set. The minimum cardinality of a metro dominating set of *G* is called metro domination number of *G* and is denoted by $\gamma_{\beta}(G)$.

II. DEFINITIONS

2.1 Metric dimension:

The metric dimension of a graph G is the minimum cardinality of a subset S of vertices such that all other vertices are uniquely determined by their distances to the vertices in S. It is denoted by $\beta(G)$.

2.2 Domination:

Let G(V,E) be a graph. A subset of vertices $D \subseteq V$ is called a dominating set (γ -set) if every vertex in *V*-*D* adjacent to atleast one vertex in *D*. The minimum cardinality of a dominating set is called the domination number of the graph *G* and is denoted by $\gamma(G)$.

2.3 Locating domination:

A dominating set *D* is called a locating dominating set or simply LD-set if for each pair of vertices $u, v \in V$ -*D*, $ND(u) \neq ND(v)$ where $ND(u) = N(u) \cap D$. The minimum cardinality of an LD-set of the graph *G* is called the locating domination number of *G* denoted by $\gamma_L(G)$.

525

[Kumar, 6(5): May 2019] DOI- 10.5281/zenodo.3234986

2.4 Metro domination:

A dominating set *D* of V(G) having the property that for each pair of vertices u, v there exists a vertex *w* in *D* such that $d(u,w) \neq d(v,w)$ is called metro dominating set of *G* or simply MD-set. The minimum cardinality of a metro dominating set of *G* is called metro domination number of *G* and is denoted by $\gamma_{\beta}(G)$.

2.5 Chromatic number:

The minimum number of colors required for a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$.

2.6 Chromatic domination:

A subset *D* of *V* is said to be a dom-chromatic set if *D* is a dominating set and $\chi(\langle D \rangle) = \chi(G)$. The dom-chromatic number $\gamma_{ch}(G)$ of *G* is the minimum cardinality of a dom-chromatic set.

III. SOME KNOWN RESULTS

In this section we mention some of the known result on metric dimension, domination, metro domination.

Theorem 3.1. (Harary and Melter [1]) The metric dimension of a non trivial complete graph of order *n* is *n*-1.

Theorem 3.2. (Khuller, Raghavachari, Rosenfeld [4]) The metric dimension of a graph G is 1 if and only if G is a path.

Theorem 3.3. (Harary and Melter [1]) The metric dimension of a complete bipartite graph $K_{m,n}$ is m+n-2.

Theorem 3.4.[5] The metro domination number of a graph G is $\left[\frac{n}{5}\right]$ if and only if G is a cycle.

Theorem 3.5.[5] Let *G* be a graph on n vertices. Then $\gamma_{\beta}(G) = n-1$ if and only if *G* is K_n or $K_{1,n-1}$ for $n \ge 1$.

Theorem 3.6. [5] For any integer n, $\gamma_{\beta}(P_n) = \left[\frac{n}{3}\right]$.

Remark 3.7. For any connected graph G, $\gamma_{\beta}(G) \ge \max{\{\gamma(G), \beta(G)\}}$.

Remark 3.8. For any integer n>3, $\chi(C_n) = \begin{cases} 3 & \text{for } n \text{ odd} \\ 2 & \text{for } n \text{ even} \end{cases}$

Remark 3.9. For any integer n > 1, $\chi(P_n) = 2$.

Lemma 3.10. [9] Let $G = P_n^2$, n > 3. Then dim(G) = 2.

Theorem 3.11.[7]For every $n \ge 1$, $\gamma_{\beta}(P_n^2) = \left[\frac{n}{s}\right]$.

Theorem 3.12. [2] For any integer
$$n \ge 3$$
, $\gamma_{\beta}(P_n^2) = \begin{cases} 2 & \text{if } 3 \ge n \ge 7 \\ 3 & \text{if } 8 \ge n \ge 10 \\ & \left\lceil \frac{n}{5} \right\rceil$ if $n \ge 11$

Remark 3.13. For any integer $n \ge 3$, $\chi(P_n^2) = 3$.

526 (C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070

[Kumar, 6(5): May 2019] DOI- 10.5281/zenodo.3234986 IV. MAIN RESULTS

ISSN 2348 - 8034 Impact Factor- 5.070

Theorem 4.1. For any integer $n \ge 4$, $SC\gamma_{\beta}(P_n) = \left\lceil \frac{n-1}{2} \right\rceil$.

Proof: By theorem 3.2 $\beta(P_n) = 1$ and by remark 3.9 $\chi(P_n) = 2$, clearly we have $\left[\frac{n}{2}\right]$ vertices of one color class and remaining $\left[\frac{n}{2}\right]$ vertices of other color class. Hence we have choice of either $\left[\frac{n}{2}\right]$ or $\left[\frac{n}{2}\right]$ vertices for dominating set D whose vertices are from the same color class.For even $n, \frac{n}{2}$ vertices of same color class dominates the remaining $\frac{n}{2}$ vertices. For odd $n, \frac{n-1}{2}$ vertices of same color class will dominates the remaining vertices and hence $SC\gamma_{\beta}(P_n) \ge \left[\frac{n-1}{2}\right]$ (1)

To prove the reverse inequality, we define a strongly chromatic dominating set $D = \left\{ v_{2i} / 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \right\}$ of cardinality $\left\lfloor \frac{n-1}{2} \right\rfloor$. We note that *D*acts as a dominating set also as a resolving set and each $v_i \in D$ is from the same color class and hence $SC\gamma_\beta(P_n) \le \left\lfloor \frac{n-1}{2} \right\rfloor$ (2)

from (1) and (2) $SC\gamma_{\beta}(P_n) = \left\lceil \frac{n-1}{2} \right\rceil.$

Theorem 4.2. For any integer $n \ge 5$, $SC\gamma_{\beta}(C_n) = \left\lfloor \frac{n-1}{2} \right\rfloor$.

Proof: By the result $\beta(C_n) = 2$ and by remark 3.8, $\chi(C_n) = \begin{cases} 3 & \text{for } n \text{ odd} \\ \text{for } n \text{ even} \end{cases}$, clearly we have $\frac{n}{2}$ vertices of one color class and remaining $\frac{n}{2}$ vertices of other color class for even $n \text{ and } \left\lfloor \frac{n}{2} \right\rfloor$ vertices of one color class and other $\left\lfloor \frac{n}{2} \right\rfloor$ vertices of second color class and remaining one vertex of third color class for odd n. Hence we have choice of $\frac{n}{2}$ vertices for dominating set D such that each $v_i \in D$ are from the same color class. For even cycle, $\frac{n}{2}$ vertices of same color class will dominate the remaining $\frac{n}{2}$ vertices. For odd cycle, $\frac{n-1}{2}$ vertices of same color class will dominate the remaining vertices and hence $SC\gamma_{\beta}(C_n) \ge \left\lfloor \frac{n-1}{2} \right\rfloor$ (1)

To prove the reverse inequality, we define a strongly chromatic dominating set $D = \left\{ v_{2i-1} / 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \right\}$ of cardinality $\left\lfloor \frac{n-1}{2} \right\rfloor$, which also acts as a resolving set and each $v_i \in D$ is from the same color class and hence $SC\gamma_{\beta}(C_n) \le \left\lfloor \frac{n-1}{2} \right\rfloor$ (2)

from (1) and (2) $SC\gamma_{\beta}(C_n) = \left\lceil \frac{n-1}{2} \right\rceil.$

Theorem 4.3. For any integer $n \le 9$, $SC\gamma_{\beta}(P_n^2) = \left\lfloor \frac{n}{3} \right\rfloor$.

Proof: By lemma 3.10, $dim(P_n^2) = 2$ for n > 3. Also by Theorem 3.11 $\gamma_\beta(P_n^2) = \left\lfloor \frac{n}{5} \right\rfloor$, $n \ge 11$ here each $\left\lfloor \frac{n}{5} \right\rfloor$ vertices of metro dominating set are not from the same color class. By remark 3.13, $\chi(P_n^2) = 3$, $n \ge 3$ if we label v_1 of P_n^2 by color 1 and v_2 by color 2 and v_3 by color 3 and continuing the coloring, we get $\left\lfloor \frac{n}{3} \right\rfloor$ vertices of color class 1, $\left\lfloor \frac{n+1}{3} \right\rfloor$

527

(C)Global Journal Of Engineering Science And Researches

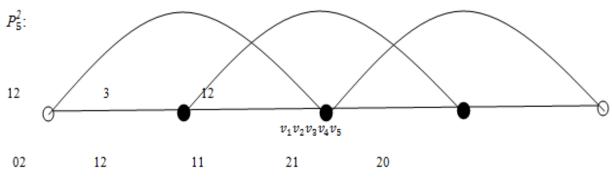
[Kumar, 6(5): May 2019]ISSN 2348 - 8034DOI- 10.5281/zenodo.3234986Impact Factor- 5.070vertices of color class 2 and $\lfloor \frac{n}{3} \rfloor$ vertices of color class 3. Hence we have a choice of $\lfloor \frac{n}{3} \rfloor$ or $\lfloor \frac{n+1}{3} \rfloor$ or $\lfloor \frac{n}{3} \rfloor$ vertices forstrongly chromatic metro dominating set minimum among these $\lfloor \frac{n}{3} \rfloor$ is minimum and hence $SC\gamma_{\mathcal{B}}(P_n^2) \ge \lfloor \frac{n}{2} \rfloor$

 $SC\gamma_{\beta}(P_n^2) \ge \left\lfloor \frac{n}{3} \right\rfloor$

To prove the reverse inequality, we defined the strongly chromatic metro dominating set as $D = \left\{ v_{3i} / 1 \le i \le \left\lfloor \frac{n}{3} \right\rfloor \right\}$ of cardinality $\left\lfloor \frac{n}{3} \right\rfloor$. We note that D is a dominating set also acts as a resolving set and each $v_i \in D$ are all from the same color class and hence $SC\gamma_\beta(P_n^2) \le \left\lfloor \frac{n}{3} \right\rfloor(2)$

from (1) and (2) $SC\gamma_{\beta}(P_n^2) = \left\lfloor \frac{n}{3} \right\rfloor.$

EXAMPLE:



 $D_1=\{v_3\}$

 D_1 is a dominating set but not resolving set.

 $D_2 = \{v_1, v_5\}$

 D_2 is a dominating set also resolving set but both vertices are not from same color class. Hence it is not a strongly chromatic metro domination.

Hence P_5^2 is not a strongly chromatic metro domination.

REFERENCE

- 1. F.Harary and R.A. Melter, on the metric dimension of graphs, Ars Combinatoria, 2(1976) 191-195.
- 2. G.C. Basavaraju, M. Vishukumar and P. Raghunath, Metro domination of Square Path, Annals of Pure and Applied Mathematics vol.14, No. 3,2017,539-545.
- 3. S. Balamurugan, P.Aristotle, V. Swaminathan and G. Prabakaran, on graphs whose neighbourhood chromatic domination number is two, International Journal of Pure and Applied Mathematics, Volume 119, No. 15, 2018, 213-224.
- 4. S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graph, Discrete Appl. Math., 70 (3) (1996) 217-229.
- 5. P.R aghunath and B. Sooryanarana, Metro domination number of a graph, Twentieth annual conference of Rmanujan Mathematics Society, July 25-30 (2005) University of Calicut.
- 6. S. Lakshminarayana and M. Vishukumar, on the k-Metro domination number of Paths, Annals of Pure and Applied Mathematics, Vol. 14, No. 3, 2017, 593-600.
- 7. M. Alishahi and S.H. Shalmaee, Domination number of Square of Cartesian product of Cycles, Open Journal of Discrete Mathematics, 5(2015) 88-94.
- 8. G.C. Basavaraju, M. Vishukumar and P. Raghunath, Metro domination of Square Cycle, International 528

(C)Global Journal Of Engineering Science And Researches

[Kumar, 6(5): May 2019] DOI- 10.5281/zenodo.3234986

ISSN 2348 - 8034 Impact Factor- 5.070

- Journal of Mathematics and its Applications, Volume 5, Issue 4-E(2017), 641-645. 9. M. M.AlHoli, O.A. Abughneim and H.Al. Ezeh, Metric dimension of Path related graphs, Global Journal of
- M. M.AlHoli, O.A. Abughneim and H.Al. Ezeh, Metric dimension of Path related graphs, Global Journal of Pure and Applied Mathematics, 13 (2) (2017) 149-157.

